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1. INTRODUCTION 

This note would like to develop some ideas of Engelman et al.' about penalty methods. Two 
remarks will be made: the first deals with the role of the mass matrix M in consistent penalty 
methods and the second with the effect of numerical quadrature on the BabGska-Brezzi 
(B-B) compatibility condition. 

2. THE ROLE OF THE MASS MATRIX 

To remain in the same framework as the authors,' we consider a discrete Stokes problem, 

a ( u h ,  p h v .  Vh  dx = f .  2)h dX v vh E vh, I, 
In v . U h q h d X = O  V q h E Q h ,  

where vh is an N-dimensional space of approximate velocities, Qh an L-dimensional space 
of approximate pressures and a(u, v )  =jfi E , ~ ( u ) E , ~ ( v )  dx. Let U and P be the vectors of 
'nodal values' of uh E V, and ph E Oh. We now define A N x N ,  CLxN,  MLxL,  FNxl by 

Problem (1) is now equivalent to, 
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which is nothing but a linearly constrained quadratic problem in @" precisely 

cu=o inf $(AU, U)@N-(F,  U ) W ~ .  (4) 

In (3)  the Lagrange multiplier P has been introduced to deal with the linear constraint 
CU = 0. In mathematical programming, a standard procedure to solve constrained problems 
is to use a penalty method. A penalty method has nothing to do, in itself, with finite elements. 
It can, however, be applied to solve problems arising from finite element approximations 
such as (4). Let then S be any positive definite L x L matrix. Then (S-IP, P) is the square of 
a norm on RL and it is possible to approximate problem (4) by the following problem: 

The solution U, is found by solving the linear system, 

AUA +ACTS-lCUA =F,  
that can also be written as, 

AU, = CTP = F,) 

cu , - A  --SP. l 1  (7) 

A possible choice of a suitable matrix S is S = M. However, any choice (including S = I  and 
computing M by some quadrature rules) will lead to a penalty method in which U, 
converges to the solution of (3) when A 3 00 and AS-lCU converges to P. It is only necessary 
in practice to use a not too ill-conditioned matrix in order to avoid a bad scaling in the 
penalty factor. This makes it possible to use a penalty method even with approximations 
where the functions of Qh are continuous across element boundaries and where M-' is a full 
matrix and cannot be used in (6). 

3 .  THE EFFECT OF NUMERICAL QUADRATURE ON THE 
BAB~SKA-BREZZI CONDITION 

We have just said that a precise evaluation of the mass matrix M is not a necessary part of a 
consistent penalty method. The same is not true of an approximate quadrature rule applied 
to the computation of matrix C. Any error on the evaluation of j a  phV. vh dx changes the 
matrix C in (3)  to another matrix e and the solution itself will be changed as the discrete 
divergence-free condition is no longer the same. 

By how much it will be changed is a matter for stability analysis. Engelman et al.' use a 
result of Brezzi' to make this analysis. Although their discussion is mostly right, I think a few 
points can be clarified and a small mistake corrected. Let us first recall some facts about the 
equivalence of reduced integration penalty methods and mixed methods (cf. MaIkus and 
Hughes3 and Oden4). 

A reduced integration penalty (RIP) method is one in which a penalty term 
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is introduced in the ‘continuous’ (infinite dimensional) problem. When this term is computed 
in a discrete problem using finite elements, an inexact quadrature is used. For instance using 
a Q2, 9-node element for velocities and using a 4-point (2x2) Gaussian rule to evaluate 

lV.vh12dX 

is a RIP method. It was shown by Malkus and Hughes3 that using a RIP method is 
equivalent to some mixed method in which the nodal values of pressure are defined at the 
quadrature point and in which the matrix C corresponding to 

would be evaluated by the same quadrature rule. 

quadrature rule is exact for the computation of 
Thus a RIP method will be equivalent to a consistent penalty method if and only if the 

This clearly comes out from the numerical results of Engelman et a1.l Consider for instance 
the Qz- Q, consistent method and the Q2, 4-point RIP method. They yield the same results 
as long as the 4-point rule is exact to compute C, that is for quadrilaterals with straight sides 
and natural centroids. Whenever the centroid is displaced or the sides are curved the 4-point 
rule is no longer exact and the RIP method becomes equivalent to a modified mixed method 
in which 6 is an approximation of C. 

When 

Phv . vh dx 

is computed by a quadrature rule, it is necessary that the approximation of the mass matrix 
by the same rule be positive definite or equivalently that the quadrature points must contain 
a unisolvent set for the pressures qh of ah. If this were not the case the kernel of CT would 
become very large, pressure would be undetermined at element level and very exotic 
pressure modes would appear. (Furthermore if this approximate mass matrix is to be used as 
a penalty matrix it should be positive definite.) 

For instance a Q2--P, approximation with a 4-point rule is correct but collapses with a 
1-point rule. In this last case one should replace Qh by a Po (piecewise constant) approxima- 
tion. 

Thus we have a first check for the B-B condition when numerical quadrature is involved: the 
quadrature points must contain an unisolvent set for the pressure on every element. In 
Engelman et a1.l this was incorrectly applied to the velocities instead of the pressure to 
conclude that a QZ - PI approximation with j p h v  . vh dx evaluated by a 4-point rule does not 
satisfy the B-B condition. 

This condition is, however, not sufficient. To go further we shall suppose that the mixed 
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method with exact quadrature does satisfy the B-B condition which is 

Let then b ’ ( V h ,  p h )  be an approximation of b(2)h, p h )  such that 

where C ( h )  -+ 0 as h 4 0. Then one has, 

for h small enough. Indeed one has, 

which clearly implies (10) if (9) is satisfied. 
As can be seen from the previous proof, it would be sufficient to prove that one has, 

a h )  < k, (12) 
for h small enough. This is indeed a much more difficult task as the precise values of the 
constants are very difficult to obtain. The real problem is then to check (9) and this requires a 
very careful analysis. We shall consider one case for which we know (cf. Forth5) that (8) 
holds, that is the Qz -PI approximation and we shall evaluate the effect of using a (2 x 2) 
Gaussian quadrature rule with this approximation. 

In this case there is no quadrature error if the elements are straight-sided quadrilaterals 
with ‘natural centroids’. 

We shall outline the proof of the following result: 
For h small enough, the Q2-P1 approximation with a (2x2) Gaussian rule satisfies the 

B-B condition if the elements are ‘not too curved’. Precisely, the deviation of midpoints 
from the straight line and that of the centroid from its natural place must be O(h2) when h 
converges to zero. 

It must be remarked that the condition stated is a standard one (cf. Ciarlet6 and Ciarlet 
and Raviart’) in the theory of isoparametric quadrilateral approximations. The reader should 
also note that the proof relies heavily on the special form of the inverse of a 2 X 2 matrix and 
cannot be extended to the 3-D case. This is also consistent with the results of Engelman et 
al.’ 

Let us now sketch the proof. We consider the change of variables enabling us to pass from 
the reference element R to the element K.  We have 

0 

or 
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N 

Figure 1 

where c k  and d k  are the components of vector i i k  - a k ,  in Figure 1. Points iik refer to the 
midpoints of the straight-sided part of the element defined by the functions q1 and q2. By 
assumption we have c k  = O(h2) and dk = O(h2). We have denoted fl the basis functions 
associated with the nodes 5 to 9 in the usual definition of a Qz element. 

The operator V, on K is related to 6, on K by 

V = (DF)-'P. (14) 

One has 

=-M1+-M,. 1 1 
J J 

We have to estimate the error made when evaluating, by 
expression 

a (2x2) Gaussian rule, the 

= &,(&fx?) . 6 h  d2 f 1- f l h ( h ' f 2 6 )  . d k  (16) 

The determinants J have cancelled and the expression has been split into two parts. There is 
no quadrature error for the first part that corresponds to the straight-sided part of the 
element (cf. also Leone et aL8) Only the terms of the second part induce errors and this error 
is bounded by 

K 

(T c k  + d k ) e  Ilahhlll,K l f l lO,&. (17) 

To prove (17) we use the continuity of the error on the space of polynomials containing fih 

and flh and the equivalence of norms on these finite dimensional spaces. The constant e 
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depends only on 2. For details on the techniques used, the reader should refer to Ciarlet.6 
Now, using standard formulae for the change of variables, we bound (17) by, 

using again the methods of Ciarlet6 and the assumption on c k  and dk. This bound 
corresponds to condition (9) and we thus have the B-B condition. 

Another less important although interesting case is the Q,-Po element with a 1-point 
quadrature rule. The above proof unfortunately cannot be extended to this case. The author 
conjectures that one should be able to prove that this approximation satisfies the B-B 
condition if the mesh is ‘not too distorted’, that is if one uses straight-sided quadrilaterals 
that tend to parallelograms when h tends to zero. 

Following the same steps as in the proof one splits the integral into two parts. The first 
depends on the linear part of the change of variables and the second on the 29 terms. This 
last part converges to zero by the geometric condition. However, the first part induces a 
quadrature error, although only for basis functions associated with the midpoints. 

I found no way of proving that this term converges to zero. It is therefore possible that this 
is a case where condition (12) should be proved to make theory coincide with experimental 
evidence. 
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